
fauxmo Documentation
Release v0.6.0

Nathan Henrie

Jul 24, 2023

Contents

1 Fauxmo README 3

2 fauxmo 13

3 Credits 23

4 Changelog 25

5 Contributing 31

6 protocol_notes.md 35

7 Indices and tables 41

Python Module Index 43

Index 45

i

ii

fauxmo Documentation, Release v0.6.0

Contents:

Contents 1

fauxmo Documentation, Release v0.6.0

2 Contents

CHAPTER 1

Fauxmo README

master: master branch build status dev: dev branch build status

Python 3 module that emulates Belkin WeMo devices for use with the Amazon Echo.

Originally forked from https://github.com/makermusings/fauxmo, unforked to enable GitHub code search (which cur-
rently doesn’t work in a fork), and because the libraries have diverged substantially.

• Documentation: fauxmo.readthedocs.org

1.1 Introduction

The Amazon Echo is able to control certain types of home automation devices by voice. Fauxmo provides emulated
Belkin Wemo devices that the Echo can turn on and off by voice, locally, and with minimal lag time. Currently
these Fauxmo devices can be configured to make requests to an HTTP server such as Home Assistant or to run other
commands locally on the device and only require a JSON config file for setup.

As of version v0.4.0, Fauxmo uses several API features and f-strings that require Python 3.6+. I highly recommend
looking into pyenv if you’re currently on an older Python version and willing to upgrade. Otherwise, check out the
FAQ section at the bottom for tips on installing an older Fauxmo version (though note that I will not be continuing
development or support for older versions).

For what it’s worth, if you’re concerned about installing pyenv on a low-resource machine like the Raspberry Pi, I
encourage you to review my notes on the size and time required to install Python 3.6 with pyenv on a Raspberry Pi
and the nontrivial improvement in speed (with a simple pystone benchmark) using an optimized pyenv-installed 3.6 as
compared to the default Raspbian 3.5.3.

1.2 Terminology

faux (\fō\): imitation

WeMo: Belkin home automation product with which the Amazon Echo can interface

3

https://github.com/n8henrie/fauxmo/actions/workflows/python-package.yml
https://github.com/n8henrie/fauxmo/actions/workflows/python-package.yml
https://github.com/makermusings/fauxmo
https://fauxmo.readthedocs.org
https://home-assistant.io
https://github.com/pyenv/pyenv
https://n8henrie.com/2018/02/pyenv-size-and-python-36-speed-installation-time-on-raspberry-pi/

fauxmo Documentation, Release v0.6.0

Fauxmo (\fō-mō\): Python 3 module that emulates Belkin WeMo devices for use with the Amazon Echo.

Fauxmo has a server component that helps register “devices” with the Echo (which may be referred to as the Fauxmo
server or Fauxmo core). These devices are then exposed individually, each requiring its own port, and may be referred
to as a Fauxmo device or a Fauxmo instance. The Echo interacts with each Fauxmo device as if it were a separate
WeMo device.

1.3 Usage

Installation into a venv is highly recommended, especially since it’s baked into the recent Python versions that Fauxmo
requires.

Additionally, please ensure you’re using a recent version of pip (>= 9.0.1) prior to installation: pip install
--upgrade pip

1.3.1 Simple install: From PyPI

1. python3 -m venv .venv

2. source ./.venv/bin/activate

3. python3 -m pip install fauxmo

4. Make a config.json based on config-sample.json

5. fauxmo -c config.json [-v]

As of v0.6.0, you can optionally install uvloop for potentially better performance, which might be helpful if you
have a large number of devices or a network with lots of broadcast mdns traffic. If it is present, fauxmo will take
advantage. It is not terribly difficult to install uvloop but you are on your own: https://github.com/MagicStack/
uvloop.

1.3.2 Simple install of dev branch from GitHub

This is a good strategy for testing features in development – for actually contributing to development, clone the repo
as per below)

1. python3 -m venv .venv

2. source ./.venv/bin/activate

3. pip install [-e] git+https://github.com/n8henrie/fauxmo.git@dev

1.3.3 Install for development from GitHub

1. git clone https://github.com/n8henrie/fauxmo.git

2. cd fauxmo

3. python3 -m venv .venv

4. source ./.venv/bin/activate

5. pip install -e .[dev,test]

6. cp config-sample.json config.json

7. Edit config.json

4 Chapter 1. Fauxmo README

https://github.com/n8henrie/fauxmo/blob/master/config-sample.json
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop

fauxmo Documentation, Release v0.6.0

8. fauxmo [-v]

1.3.4 Set up the Echo

1. Open the Amazon Alexa webapp to the Smart Home page

2. With Fauxmo running, click “Discover devices” (or tell Alexa to “find connected devices”)

3. Ensure that your Fauxmo devices were discovered and appear with their names in the web interface

4. Test: “Alexa, turn on [the kitchen light]”

1.3.5 Set Fauxmo to run automatically in the background

NB: As discussed in #20, the example files in extras/ are not included when you install from PyPI* (using pip). If
you want to use them, you either need to clone the repo or you can download them individually using tools like wget
or curl by navigating to the file in your web browser, clicking the Raw button, and using the resulting URL in your
address bar.

* As of Fauxmo v0.4.0 extras/ has been added to MANIFEST.in and may be included somewhere depending on
installation from the .tar.gz vs whl format – if you can’t find them, you should probably just get the files manually
as described above.

systemd (e.g. Raspbian Jessie)

1. Recommended: add an unprivileged user to run Fauxmo: sudo useradd -r -s /bin/false fauxmo

• NB: Fauxmo may require root privileges if you’re using ports below 1024

2. sudo cp extras/fauxmo.service /etc/systemd/system/fauxmo.service

3. Edit the paths in /etc/systemd/system/fauxmo.service

4. sudo systemctl enable fauxmo.service

5. sudo systemctl start fauxmo.service

launchd (OS X)

1. cp extras/com.n8henrie.fauxmo.plist ~/Library/LaunchAgents/com.n8henrie.
fauxmo.plist

2. Edit the paths in ~/Library/LaunchAgents/com.n8henrie.fauxmo.plist

• You can remove the StandardOutPath and StandardErrorPath sections if desired

3. launchctl load ~/Library/LaunchAgents/com.n8henrie.fauxmo.plist

4. launchctl start com.n8henrie.fauxmo

1.4 Plugins

Plugins are small user-extendible classes that allow users to easily make their own actions for Fauxmo to run by way
of Alexa commands. They were previously called Handlers and may be referred to as such in places in the code and
documentation.

1.4. Plugins 5

http://alexa.amazon.com/#smart-home
https://github.com/n8henrie/fauxmo/issues/20

fauxmo Documentation, Release v0.6.0

Fauxmo v0.4.0 implements a new and breaking change in the way Handlers were implemented in previous versions,
which requires modification of the config.json file (as described below).

A few plugins and the ABC from which the plugins are required to inherit may be included and installed by default
in the fauxmo.plugins package. Any pre-installed plugins, like the rest of the core Fauxmo code, have no third
party dependencies.

So far, the pre-installed plugins include:

• fauxmo.plugins.simplehttpplugin.SimpleHTTPPlugin

• fauxmo.plugins.commandlineplugin.CommandLinePlugin

• fauxmo.plugins.homeassistantplugin.HomeAssistantPlugin

SimpleHTTPPlugin responds to Alexa’s on and off commands by making requests to URL endpoints by way
of urllib. Example uses cases relevant to the IOT community might be a Flask server served from localhost that
provides a nice web interface for toggling switches, whose endpoints could be added as the on_cmd and off_cmd
args to a SimpleHTTPPlugin instance to allow activation by way of Alexa -> Fauxmo.

As of Fauxmo v0.4.5, the FauxmoPlugin abstract base class (and therefore all derivate Fauxmo plugins) requires a
get_state method, which tells Alexa a device’s state. If you don’t have a way to determine devices state, you can
just have your get_state method return "unknown", but please review the notes on get_state below.

Also, see details regarding plugin configuration in each class’s docstring, which I intend to continue as a convention for
Fauxmo plugins. Users hoping to make more complicated requests may be interested in looking at RESTAPIPlugin
in the fauxmo-plugins repository, which uses Requests for a much friendlier API.

1.4.1 User plugins

Users can easily create their own plugins, which is the motivation behind most of the changes in Fauxmo v0.4.0.

To get started:

1. Decide on a name for your plugin class. I highly recommend something descriptive, CamelCase and a Plugin
suffix, e.g. FooSwitcherPlugin.

2. I strongly recommend naming your module the same as the plugin, but in all lower case, e.g.
fooswitcherplugin.py.

3. Note the path to your plugin, which will need to be included in your config.json as path (absolute path
recommended, ~ for homedir is okay).

4. Write your class, which must at minimum:

• inherit from fauxmo.plugins.FauxmoPlugin.

• provide the methods on(), off(), and get_state().

– Please note that unless the Echo has a way to determine the device state, it will likely respond that
your “device is not responding” after you turn a device on (or in some cases off, or both), but it should
still be able to switch the device.

– If you want to ignore the actual device’s state and just return the last successful action as the cur-
rent state (e.g. if device.on() succeeded then return "on"), your plugin can return super().
get_state() as its get_state() method. Some of the included plugins can be configured to
have this behavior using a use_fake_state flag in their configuration (please look at the docu-
mentation and source code of the plugins for further details). Note that this means it won’t update to
reflect state changes that occur outside of Fauxmo (e.g. manually flipping a switch, or toggling with a
different program), whereas a proper get_state implementation may be able to do so.

6 Chapter 1. Fauxmo README

https://github.com/n8henrie/fauxmo/blob/master/src/fauxmo/plugins/simplehttpplugin.py
https://github.com/n8henrie/fauxmo/blob/master/src/fauxmo/plugins/commandlineplugin.py
https://github.com/n8henrie/fauxmo/blob/master/src/fauxmo/plugins/homeassistantplugin.py
https://docs.python.org/3/library/urllib.html
https://github.com/n8henrie/fauxmo-plugins

fauxmo Documentation, Release v0.6.0

5. Any required settings will be read from your config.json and passed into your plugin as kwargs at initial-
ization, see below.

In addition to the above, if you intend to share your plugin with others, I strongly recommend that you:

• Include generous documentation as a module level docstring.

• Note specific versions of any dependencies in that docstring.

– Because these user plugins are kind of “side-loaded,” you will need to manually install their dependencies
into the appropriate environment, so it’s important to let other users know exactly what versions you use.

Be aware, when fauxmo loads a plugin, it will add the directory containing the plugin to the Python path, so any other
Python modules in this directory might be loaded by unscrupulous code. This behavior was adopted in part to facilitate
installing any plugin dependencies in a way that will be available for import (e.g. cd "$MYPLUGINPATH"; pip
install -t $MYPLUGINDEPS).

1.4.2 Notable plugin examples

NB: You may need to manually install additional dependencies for these to work – look for the dependencies in the
module level docstring.

• https://github.com/n8henrie/fauxmo-plugins

– RESTAPIPlugin

* Trigger HTTP requests with your Echo.

* Similar to SimpleHTTPPlugin, but uses Requests for a simpler API and easier modification.

– MQTTPlugin

* Trigger MQTT events with your Echo

– User contributions of interesting plugins are more than welcome!

1.5 Configuration

I recommend that you copy and modify config-sample.json. Fauxmo will use whatever config file you specify
with -c or will search for config.json in the current directory, ~/.fauxmo/, and /etc/fauxmo/ (in that
order). The minimal configuration settings are:

• FAUXMO: General Fauxmo settings

– ip_address: Optional[str] - Manually set the server’s IP address. Recommended value: "auto".

• PLUGINS: Top level key for your plugins, values should be a dictionary of (likely CamelCase) class names,
spelled identically to the plugin class, with each plugin’s settings as a subdictionary.

– ExamplePlugin: Your plugin class name here, case sensitive.

* path: The absolute path to the Python file in which the plugin class is defined (please see the sec-
tion on user plugins above). Required for user plugins / plugins not pre-installed in the fauxmo.
plugins subpackage.

* example_var1: For convenience and to avoid redundancy, your plugin class can optionally use
config variables at this level that will be shared for all DEVICES listed in the next section (e.g. an
API key that would be shared for all devices of this plugin type). If provided, your plugin class must
consume this variable in a custom __init__.

* DEVICES: List of devices that will employ ExamplePlugin

1.5. Configuration 7

https://github.com/n8henrie/fauxmo-plugins
https://github.com/kennethreitz/requests
https://github.com/n8henrie/fauxmo/blob/master/config-sample.json

fauxmo Documentation, Release v0.6.0

· name: Optional[str] – Name for this device. Optional in the sense that you can leave it out of
the config as long as you set it in your plugin code as the _name attribute, but it does need to be
set somewhere. If you omit it from config you will also need to override the __init__ method,
which expects a name kwarg.

· port: Optional[int] – Port that Echo will use connect to device. Should be different for each
device, Fauxmo will attempt to set automatically if absent from config. NB: Like name, you
can choose to set manually in your plugin code by overriding the _port attribute (and the
__init__ method, which expects a port kwarg otherwise).

· example_var2: Config variables for individual Fauxmo devices can go here if needed (e.g.
the URL that should be triggered when a device is activated). Again, your plugin class will need
to consume them in a custom __init__.

Each user plugin should describe its required configuration in its module-level docstring. The only required config
variables for all plugins is DEVICES, which is a List[dict] of configuration variables for each device of that
plugin type. Under DEVICES it is a good idea to set a fixed, high, free port for each device, but if you don’t set one,
Fauxmo will try to pick a reasonable port automatically (though it will change for each run).

Please see config-sample.json for a more concrete idea of the structure of the config file, using the built-in
SimpleHTTPPlugin for demonstration purposes. Below is a description of the kwargs that SimpleHTTPPlugin
accepts.

• name: What you want to call the device (how to activate by Echo)

• port: Port the Fauxmo device will run on

• on_cmd: str – URL that should be requested to turn device on.

• off_cmd: str – URL that should be requested to turn device off.

• state_cmd: str – URL that should be requested to query device state

• method / state_method: Optional[str] = GET – GET, POST, PUT, etc.

• headers: Optional[dict] – Extra headers

• on_data / off_data / state_data: Optional[dict] – POST data

• state_response_on / state_response_off: str – If this string is in contained in the response from
state_cmd, then the devices is on or off, respectively

• user / password: Optional[str] – Enables HTTP authentication (basic or digest only)

• use_fake_state: Optional[bool] – If True, override the plugin’s get_state method to return the latest
successful action as the device state. NB: The proper json boolean value for Python’s True is true, not True
or "true".

1.6 Security

I am not a technology professional and make no promises regarding the security of this software. Specifically, plugins
such as CommandLinePlugin execute arbitrary code from your configuration without any validation. If your
configuration can be tampered with, you’re in for a bad time.

That said, if your configuration can be tampered with (i.e. someone already has write access on your machine), then
you likely have bigger problems.

Regardless, a few reasonable precautions that I recommend:

• run fauxmo in a virtulaenv, even without any dependencies

• run fauxmo as a dedicated unprivileged user with its own group

8 Chapter 1. Fauxmo README

https://github.com/n8henrie/fauxmo/blob/master/config-sample.json

fauxmo Documentation, Release v0.6.0

• remove write access from the fauxmo user and group for your config file and any plugin files (perhaps chmod
0640 config.json; chown me:fauxmo config.json)

• consider using a firewall like ufw, but don’t forget that you’ll need to open up ports for upnp (1900, UDP) and
ports for all your devices that you’ve configured (in config.json).

For example, if I had 4 echo devices at 192.168.1.5, 192.168.1.10, 192.168.1.15, and 192.168.1.20, and Fauxmo was
configured with devices at each of port 12345-12350, to configure ufw I might run something like:

$ for ip in 5 10 15 20; do
sudo ufw allow \

from 192.168.1."$ip" \
to any \
port 1900 \
proto udp \
comment "fauxmo upnp"

sudo ufw allow \
from 192.168.1."$ip" \
to any \
port 12345:12350 \
proto tcp \
comment "fauxmo devices"

done

You use Fauxmo at your own risk, with or without user plugins.

1.7 Troubleshooting / FAQ

Your first step in troubleshooting should probably be to “forget all devices” (which as been removed from the iOS app
but is still available at alexa.amazon.com), re-discover devices, and make sure to refresh your device list (e.g. pull
down on the “devices” tab in the iOS app, or just close out the app completely and re-open).

• How can I increase my logging verbosity?

– -v[vv]

– -vv (logging.INFO) is a good place to start when debugging

• How can I ensure my config is valid JSON?

– python -m json.tool < config.json

– Use jsonlint or one of numerous online tools

• How can I install an older / specific version of Fauxmo?

– Install from a tag:

* pip install git+git://github.com/n8henrie/fauxmo.git@v0.1.11

– Install from a specific commit:

* pip install git+git://github.com/n8henrie/fauxmo.
git@d877c513ad45cbbbd77b1b83e7a2f03bf0004856

• Where can I get more information on how the Echo interacts with devices like Fauxmo?

– Check out protocol_notes.md

• Does Fauxmo work with non-Echo emulators like Alexa AVS or Echoism.io?

– Apparently not.

1.7. Troubleshooting / FAQ 9

https://alexa.amazon.com
https://github.com/n8henrie/fauxmo/blob/master/protocol_notes
https://github.com/n8henrie/fauxmo/issues/22

fauxmo Documentation, Release v0.6.0

• How do I find my Echo firmware version?

– https://alexa.amazon.com -> Settings -> [Device Name] -> Device Software Version

1.7.1 Installing Python 3.10 with pyenv

sudo install -o $(whoami) -g $(whoami) -d /opt/pyenv
git clone https://github.com/pyenv/pyenv /opt/pyenv
cat <<'EOF' >> ~/.bashrc
export PYENV_ROOT="/opt/pyenv"
export PATH="$PYENV_ROOT/bin:$PATH"
eval "$(pyenv init -)"
EOF
source ~/.bashrc
pyenv install 3.10.6

You can then install Fauxmo into Python 3.10 in a few ways, including:

Install with pip
"$(pyenv root)"/versions/3.10.6/bin/python3.10 -m pip install fauxmo

Show full path to Fauxmo console script
pyenv which fauxmo

Run with included console script
fauxmo -c /path/to/config.json -vvv

I recommend using the full path for use in start scripts (e.g. systemd, cron)
"$(pyenv root)"/versions/3.10.6/bin/fauxmo -c /path/to/config.json -vvv

Alternatively, this also works (after `pip install`)
"$(pyenv root)"/versions/3.10.6/bin/python3.10 -m fauxmo.cli -c config.json -vvv

1.8 Docker (alpha)

I’m not a heavy docker user, but I thought it might be helpful to also provide a docker image.

The Dockerfile can be run locally from a copy of the repo; you’ll obviously need to change config-sample.json
to an absolute path to your config.json.

$ docker run --network=host --rm -it \
-v $(pwd)/config-sample.json:/etc/fauxmo/config.json:ro \
"$(docker build -q .)"

As far as I’m aware the network=host will be unavoidable due to the need to listen (and respond) to UPnP broad-
casts.

1.9 Buy Me a Coffee

10 Chapter 1. Fauxmo README

https://n8henrie.com/donate

fauxmo Documentation, Release v0.6.0

1.10 Acknowledgements / Reading List

• Tremendous thanks to @makermusings for the original version of Fauxmo!

– Also thanks to @DoWhileGeek for commits towards Python 3 compatibility

• http://www.makermusings.com/2015/07/13/amazon-echo-and-home-automation

• http://www.makermusings.com/2015/07/18/virtual-wemo-code-for-amazon-echo

• http://hackaday.com/2015/07/16/how-to-make-amazon-echo-control-fake-wemo-devices

• https://developer.amazon.com/appsandservices/solutions/alexa/alexa-skills-kit

• https://en.wikipedia.org/wiki/Universal_Plug_and_Play

• http://www.makermusings.com/2015/07/19/home-automation-with-amazon-echo-apps-part-1

• http://www.makermusings.com/2015/08/22/home-automation-with-amazon-echo-apps-part-2

• https://www.rilhia.com/tutorials/using-upnp-enabled-devices-talend-belkin-wemo-switch

1.10. Acknowledgements / Reading List 11

https://github.com/makermusings/fauxmo
http://www.makermusings.com/2015/07/13/amazon-echo-and-home-automation
http://www.makermusings.com/2015/07/18/virtual-wemo-code-for-amazon-echo
http://hackaday.com/2015/07/16/how-to-make-amazon-echo-control-fake-wemo-devices
https://developer.amazon.com/appsandservices/solutions/alexa/alexa-skills-kit
https://en.wikipedia.org/wiki/Universal_Plug_and_Play
http://www.makermusings.com/2015/07/19/home-automation-with-amazon-echo-apps-part-1
http://www.makermusings.com/2015/08/22/home-automation-with-amazon-echo-apps-part-2
https://web.archive.org/web/20160419092252/https://www.rilhia.com/tutorials/using-upnp-enabled-devices-talend-belkin-wemo-switch

fauxmo Documentation, Release v0.6.0

12 Chapter 1. Fauxmo README

CHAPTER 2

fauxmo

2.1 fauxmo package

2.1.1 Subpackages

fauxmo.plugins package

Submodules

fauxmo.plugins.commandlineplugin module

Fauxmo plugin that runs a command on the local machine.

Runs a shlex‘ed command using ‘subprocess.run, keeping the default of shell=False. Caveat emptor: there may
be major security risks to running this plugin, as it enables Fauxmo to run semi-arbitrary code, depending on your
configuration. By enabling or using it, you acknowledge that it could run commands from your config.json that could
lead to data compromise, corruption, loss, etc. Consider making your config.json read-only. If there are parts of this
you don’t understand, you should probably not use this plugin.

If the command runs with a return code of 0, Alexa should respond prompty “Okay” or something that indicates it
seems to have worked. If the command has a return code of anything other than 0, Alexa stalls for several seconds and
subsequently reports that there was a problem (which should notify the user that something didn’t go as planned).

Note that subprocess.run as implemented in this plugin doesn’t handle complex commands with pipes, redirection, or
multiple statements joined by &&, ||, ;, etc., so you can’t just use e.g. “command that sometimes fails || true” to avoid
the delay and Alexa’s response. If you really want to handle more complex commands, consider using this plugin
as a template for another one using os.system instead of subprocess.run, but realize that this comes with substantial
security risks that exceed my ability to explain.

Example config: ‘‘‘ {

“FAUXMO”: { “ip_address”: “auto”

}, “PLUGINS”: {

13

fauxmo Documentation, Release v0.6.0

“CommandLinePlugin”: {

“DEVICES”: [

{ “name”: “output stuff to a file”, “port”: 49915, “on_cmd”: “touch testfile.txt”,
“off_cmd”: “rm testfile.txt”, “state_cmd”: “ls testfile.txt”

}, {

“name”: “command with fake state”, “port”: 49916, “on_cmd”: “touch test-
file.txt”, “off_cmd”: “rm testfile.txt”, “use_fake_state”: true

}

]

}

}

}

class fauxmo.plugins.commandlineplugin.CommandLinePlugin(name: str, port: int,
on_cmd: str, off_cmd:
str, state_cmd: str | None
= None, use_fake_state:
bool = False)

Bases: fauxmo.plugins.FauxmoPlugin

Fauxmo Plugin for running commands on the local machine.

__init__(name: str, port: int, on_cmd: str, off_cmd: str, state_cmd: str | None = None,
use_fake_state: bool = False)→ None

Initialize a CommandLinePlugin instance.

Parameters

• name – Name for this Fauxmo device

• port – Port on which to run a specific CommandLinePlugin instance

• on_cmd – Command to be called when turning device on

• off_cmd – Command to be called when turning device off

• state_cmd – Command to check device state (return code 0 == on)

• use_fake_state – If True, override get_state to return the latest action as the device
state. NB: The proper json boolean value for Python’s True is true, not True or “true”.

get_state()→ str
Get device state.

NB: Return code of 0 (i.e. ran without error) indicates “on” state, otherwise will be off. making it easier
to have something like ls path/to/pidfile suggest on. Many command line switches may not actually have
a “state” per se (just an arbitary command you want to run), in which case you could just put “false” as the
command, which should always return “off”.

Returns “on” or “off” if state_cmd is defined, “unknown” if undefined

off()→ bool
Run off command.

Returns True if command seems to have run without error.

14 Chapter 2. fauxmo

fauxmo Documentation, Release v0.6.0

on()→ bool
Run on command.

Returns True if command seems to have run without error.

run_cmd(cmd: str)→ bool
Partialmethod to run command.

Parameters cmd – Command to be run

Returns True if command seems to have run without error

fauxmo.plugins.homeassistantplugin module

Fauxmo plugin to interact with Home Assistant devices.

One simple way to find your entity_id is to use curl and pipe to grep or jq. Note that modern versions of home-assistant
require you to create and include a long-lived access token, which you can generate in the web interface at the /profile
endpoint.

curl –silent –header “Authorization: Bearer YourTokenHere” http://IP:PORT/api/states | jq

NB: This is just a special case of the RESTAPIPlugin (or even SimpleHTTPPlugin, see config-sample.json in the main
Fauxmo repo), but it makes config substantially easier by not having to redundantly specify headers and endpoints.

Install to Fauxmo by downloading or cloning and including in your Fauxmo config. One easy way to make a long-lived
access token is by using the frontend and going to the /profile endpoint, scroll to the bottom. Documentation on the
long-lived tokens is available at https://developers.home-assistant.io/docs/en/auth_api.html#long-lived-access-token

Example config: ‘‘‘ {

“FAUXMO”: { “ip_address”: “auto”

}, “PLUGINS”: {

“HomeAssistantPlugin”: { “ha_host”: “192.168.0.50”, “ha_port”: 8123, “ha_protocol”:
“http”, “ha_token”: “abc123”, “DEVICES”: [

{ “name”: “example Home Assistant device 1”, “port”: 12345, “entity_id”:
“switch.my_fake_switch”

}, {

“name”: “example Home Assistant device 2”, “port”: 12346, “entity_id”:
“cover.my_fake_cover”

}

]

}

}

2.1. fauxmo package 15

http://IP:PORT/api/states
https://developers.home-assistant.io/docs/en/auth_api.html#long-lived-access-token

fauxmo Documentation, Release v0.6.0

}

class fauxmo.plugins.homeassistantplugin.HomeAssistantPlugin(name: str, port:
int, entity_id:
str, ha_host: str,
ha_port: int =
8123, ha_protocol:
str = ’http’,
ha_token: str |
None = None,
domain: str | None
= None)

Bases: fauxmo.plugins.FauxmoPlugin

Fauxmo plugin for HomeAssistant REST API.

Allows users to specify Home Assistant services in their config.json and toggle these with the Echo.

__init__(name: str, port: int, entity_id: str, ha_host: str, ha_port: int = 8123, ha_protocol: str =
’http’, ha_token: str | None = None, domain: str | None = None)→ None

Initialize a HomeAssistantPlugin instance.

Parameters

• entity_id – entity_id used by HomeAssistant

• ha_host – Host running HomeAssistant

• ha_port – Port number for HomeAssistant access

• ha_protocol – http or https

• ha_token – Long-lived HomeAssistant token

• domain – Override the domain instead of guessing from entity_id

get_state()→ str
Query the state of the Home Assistant device.

Returns: Device state as reported by HomeAssistant

off()→ bool
Turn the Home Assistant device off.

Returns: Whether the device seems to have been turned off.

on()→ bool
Turn the Home Assistant device on.

Returns: Whether the device seems to have been turned on.

send(signal: str)→ bool
Send signal as determined by service_map.

Parameters signal – the signal the service should recongize

service_map = {'cover': {'off': 'close_cover', 'off_state': 'closed', 'on': 'open_cover', 'on_state': 'open'}}

fauxmo.plugins.simplehttpplugin module

simplehttpplugin.py :: Fauxmo plugin for simple HTTP requests.

16 Chapter 2. fauxmo

fauxmo Documentation, Release v0.6.0

Fauxmo plugin that makes simple HTTP requests in its on and off methods. Comes pre-installed in Fauxmo as an
example for user plugins.

For more complicated requests (e.g. authentication, sending JSON), check out RESTAPIPlugin in
https://github.com/n8henrie/fauxmo-plugins/, which takes advantage of Requests’ rich API.

class fauxmo.plugins.simplehttpplugin.SimpleHTTPPlugin(*, headers: dict | None =
None, method: str = ’GET’,
name: str, off_cmd: str,
off_data: t.Union[Mapping,
str] | None = None,
on_cmd: str, on_data:
t.Union[Mapping, str] |
None = None, state_cmd: str
| None = None, state_data:
t.Union[Mapping,
str] | None = None,
state_method: str =
’GET’, state_response_off:
str | None = None,
state_response_on: str |
None = None, password:
str | None = None, port:
int, use_fake_state: bool =
False, user: str | None =
None)

Bases: fauxmo.plugins.FauxmoPlugin

Plugin for interacting with HTTP devices.

The Fauxmo class expects plugins to be instances of objects that inherit from FauxmoPlugin and have on() and
off() methods that return True on success and False otherwise. This class takes a mix of url, method, header,
body, and auth data and makes REST calls to a device.

This is probably less flexible than using Requests but doesn’t add any non-stdlib dependencies. For an example
using Requests, see the fauxmo-plugins repo.

The implementation of the get_state() method is admittedly sloppy, trying to be somewhat generic to cover a
broad range of devices that may have a state that can be queried by either GET or POST request (sometimes
differing from the method required to turn on or off), and whose response often contains the state. For example,
if state is returned by a GET request to localhost:8765/state with <p>Device is running</p> or <p>Device is
not running</p>, you could use those strings as state_command_on and state_command_off, respectively.

__init__(*, headers: dict | None = None, method: str = ’GET’, name: str, off_cmd: str, off_data:
t.Union[Mapping, str] | None = None, on_cmd: str, on_data: t.Union[Mapping, str] | None
= None, state_cmd: str | None = None, state_data: t.Union[Mapping, str] | None = None,
state_method: str = ’GET’, state_response_off: str | None = None, state_response_on: str |
None = None, password: str | None = None, port: int, use_fake_state: bool = False, user:
str | None = None)→ None

Initialize a SimpleHTTPPlugin instance.

Keyword Arguments

• headers – Additional headers for both on() and off()

• method – HTTP method to be used for both on() and off()

• name – Name of the device

• off_cmd – URL to be called when turning device off

2.1. fauxmo package 17

fauxmo Documentation, Release v0.6.0

• off_data – Optional POST data to turn device off

• on_cmd – URL to be called when turning device on

• on_data – Optional POST data to turn device on

• state_cmd – URL to be called to determine device state

• state_data – Optional POST data to query device state

• state_method – HTTP method to be used for get_state()

• state_response_off – If this string is in the response to state_cmd, the device is off.

• password – Password for HTTP authentication (basic or digest only)

• port – Port that this device will run on

• use_fake_state – If True, override get_state to return the latest action as the device
state. NB: The proper json boolean value for Python’s True is true, not True or “true”.

• user – Username for HTTP authentication (basic or digest only)

get_state()→ str
Get device state.

Returns “on”, “off”, or “unknown”

off()→ bool
Turn device off by calling self.off_cmd with self.off_data.

Returns True if the request seems to have been sent successfully

on()→ bool
Turn device on by calling self.on_cmd with self.on_data.

Returns True if the request seems to have been sent successfully

set_state(cmd: str, data: bytes | None)→ bool
Call HTTP method, for use by functools.partialmethod.

Parameters

• cmd – Either “on_cmd” or “off_cmd”, for getattr(self, cmd)

• data – Either “on_data” or “off_data”, for getattr(self, data)

Returns Boolean indicating whether it state was set successfully

Module contents

fauxmo.plugins :: Provide ABC for Fauxmo plugins.

class fauxmo.plugins.FauxmoPlugin(*, name: str, port: int)
Bases: abc.ABC

Provide ABC for Fauxmo plugins.

This will become the plugin attribute of a Fauxmo instance. Its on and off methods will be called when Alexa
turns something on or off.

All keys (other than the list of DEVICES) from the config will be passed into FauxmoPlugin as kwargs at
initialization, which should let users do some interesting things. However, that means users employing custom
config keys will need to override __init__ and either set the name and “private” _port attributes manually or
pass the appropriate args to super().__init__().

18 Chapter 2. fauxmo

fauxmo Documentation, Release v0.6.0

__init__(*, name: str, port: int)→ None
Initialize FauxmoPlugin.

Keyword Arguments

• name – Required, device name

• port – Required, port that the Fauxmo associated with this plugin should run on

Note about port: if not given in config, it will be set to an apparently free port in fauxmo.fauxmo before
FauxmoPlugin initialization. This attribute serves no default purpose in the FauxmoPlugin but is passed
in to be accessible by user code (i.e. for logging / debugging). Alternatively, one could accept and throw
away the passed in port value and generate their own port in a plugin, since the Fauxmo device determines
its port from the plugin’s instance attribute.

The _latest_action attribute stores the most recent successful action, which is set by the __getattribute__
hackery for successful .on() and .off() commands.

close()→ None
Run when shutting down; allows plugin to clean up state.

get_state()→ str
Run function when Alexa requests device state.

Should return “on” or “off” if it can be determined, or “unknown” if there is no mechanism for determining
the device state, in which case Alexa will complain that the device is not responding.

If state cannot be determined, a plugin can opt into this implementation, which falls back on the _lat-
est_action attribute. It is intentionally left as an abstract method so that plugins cannot omit a get_state
method completely, which could lead to unexpected behavior; instead, they should explicitly return su-
per().get_state().

latest_action
Return latest action in read-only manner.

Must be a function instead of e.g. property because it overrides get_state, and therefore must be callable.

name
Return name attribute in read-only manner.

off()→ bool
Run function when Alexa turns this Fauxmo device off.

on()→ bool
Run function when Alexa turns this Fauxmo device on.

port
Return port attribute in read-only manner.

2.1.2 Submodules

2.1.3 fauxmo.cli module

cli.py :: Argparse based CLI for fauxmo.

Provides console_script via argparse.

fauxmo.cli.cli()→ None
Parse command line options, provide entry point for console scripts.

2.1. fauxmo package 19

fauxmo Documentation, Release v0.6.0

2.1.4 fauxmo.fauxmo module

fauxmo.py :: Main server code for Fauxmo.

Emulates a Belkin Wemo for interaction with an Amazon Echo. See README.md at <https://github.com/n8henrie/
fauxmo>.

fauxmo.fauxmo.main(config_path_str: str | None = None, verbosity: int = 20)→ None
Run the main fauxmo process.

Spawns a UDP server to handle the Echo’s UPnP / SSDP device discovery process as well as multiple TCP
servers to respond to the Echo’s device setup requests and handle its process for turning devices on and off.

Parameters

• config_path_str – Path to config file. If not given will search for config.json in cwd,
~/.fauxmo/, and /etc/fauxmo/.

• verbosity – Logging verbosity, defaults to 20

2.1.5 fauxmo.protocols module

protocols.py :: Provide asyncio protocols for UPnP and SSDP discovery.

class fauxmo.protocols.Fauxmo(name: str, plugin: fauxmo.plugins.FauxmoPlugin)
Bases: asyncio.protocols.Protocol

Mimics a WeMo switch on the network.

Aysncio protocol intended for use with BaseEventLoop.create_server.

NEWLINE = '\r\n'

__init__(name: str, plugin: fauxmo.plugins.FauxmoPlugin)→ None
Initialize a Fauxmo device.

Parameters

• name – How you want to call the device, e.g. “bedroom light”

• plugin – Fauxmo plugin

static add_http_headers(xml: str)→ str
Add HTTP headers to an XML body.

Parameters xml – XML body that needs HTTP headers

connection_made(transport: asyncio.transports.BaseTransport)→ None
Accept an incoming TCP connection.

Parameters transport – Passed in asyncio.Transport

data_received(data: bytes)→ None
Decode incoming data.

Parameters data – Incoming message, either setup request or action request

handle_action(msg: str)→ None
Execute on, off, or get_state method of plugin.

Parameters msg – Body of the Echo’s HTTP request to trigger an action

handle_event()→ None
Respond to request for eventservice.xml.

20 Chapter 2. fauxmo

https://github.com/n8henrie/fauxmo
https://github.com/n8henrie/fauxmo

fauxmo Documentation, Release v0.6.0

handle_metainfo()→ None
Respond to request for metadata.

handle_setup()→ None
Create a response to the Echo’s setup request.

class fauxmo.protocols.SSDPServer(devices: t.Iterable[dict] | None = None)
Bases: asyncio.protocols.DatagramProtocol

UDP server that responds to the Echo’s SSDP / UPnP requests.

__init__(devices: t.Iterable[dict] | None = None)→ None
Initialize an SSDPServer instance.

Parameters devices – Iterable of devices to advertise when the Echo’s SSDP search request
is received.

add_device(name: str, ip_address: str, port: int)→ None
Keep track of a list of devices for logging and shutdown.

Parameters

• name – Device name

• ip_address – IP address of device

• port – Port of device

connection_lost(exc: Exception | None)→ None
Handle lost connections.

Parameters exc – Exception type

connection_made(transport: asyncio.transports.BaseTransport)→ None
Set transport attribute to incoming transport.

Parameters transport – Incoming asyncio.DatagramTransport

datagram_received(data: Union[bytes, str], addr: Tuple[str, int])→ None
Check incoming UDP data for requests for Wemo devices.

Parameters

• data – Incoming data content

• addr – Address sending data

respond_to_search(addr: Tuple[str, int], discover_pattern: str, mx: float = 0.0)→ None
Build and send an appropriate response to an SSDP search request.

Parameters addr – Address sending search request

2.1.6 fauxmo.utils module

utils.py :: Holds utility functions for Fauxmo.

fauxmo.utils.get_local_ip(ip_address: str | None = None)→ str
Attempt to get the local network-connected IP address.

Parameters ip_address – Either desired ip address or string or “auto”

Returns Current IP address as string

fauxmo.utils.get_unused_port()→ int
Temporarily binds a socket to an unused system assigned port.

2.1. fauxmo package 21

fauxmo Documentation, Release v0.6.0

Returns Port number

fauxmo.utils.make_serial(name: str)→ str
Create a persistent UUID from the device name.

Returns a suitable UUID derived from name. Should remain static for a given name.

Parameters name – Friendly device name (e.g. “living room light”)

Returns Persistent UUID as string

fauxmo.utils.make_udp_sock()→ socket.socket
Make a suitable udp socket to listen for device discovery requests.

I would love to get rid of this function and just use the built-in options to create_datagram_endpoint
(e.g. allow_broadcast with appropriate local and remote addresses), but having no luck. Would be
thrilled if someone can figure this out in a better way than this or <https://github.com/n8henrie/fauxmo/blob/
c5419b3f61311e5386387e136d26dd8d4a55518c/src/fauxmo/protocols.py#L149>.

Returns Socket suitable for responding to multicast requests

fauxmo.utils.module_from_file(modname: str, path_str: str)→ module
Load a module into modname from a file path.

Parameters

• modname – The desired module name

• path_str – Path to the file

Returns Module read in from path_str

2.1.7 Module contents

fauxmo :: Emulated Belkin Wemo devices for use with the Amazon Echo.

22 Chapter 2. fauxmo

https://github.com/n8henrie/fauxmo/blob/c5419b3f61311e5386387e136d26dd8d4a55518c/src/fauxmo/protocols.py#L149
https://github.com/n8henrie/fauxmo/blob/c5419b3f61311e5386387e136d26dd8d4a55518c/src/fauxmo/protocols.py#L149

CHAPTER 3

Credits

3.1 Development Lead

• Nathan Henrie nate@n8henrie.com

3.2 Contributors

• Originally based on work by Maker Musings

23

mailto:nate@n8henrie.com
https://github.com/makermusings

fauxmo Documentation, Release v0.6.0

24 Chapter 3. Credits

CHAPTER 4

Changelog

Will not contain minor changes – feel free to look through git log for more detail.

4.1 v0.6.0 :: 20220304

• Python 3.10

• Add optional uvloop support (https://github.com/n8henrie/fauxmo/issues/112)

• Add option to override domain to homeassistantplugin.py (https://github.com/n8henrie/fauxmo/issues/114)

4.2 v0.5.1, v0.5.2 :: 20210901

• Version bumps to upload new pyproject.toml format to PyPI

4.3 v0.5.0 :: 20191212

• Add py38 support

• Add use_fake_state option to accommodate situations that state can’t be properly determined (thanks
@johngo7470)

• Bugfix: fix unexpected behavior with a switch’s state logic was true for both on and off

• Migrated HomeAssistantPlugin and CommandLinePlugin from fauxmo-plugins repo

• Update tests, pytest fixtures, and add some mocks

25

fauxmo Documentation, Release v0.6.0

4.4 v0.4.9 :: 20190527

• Add py37 support (including Travis workaround)

• Fix bug in content-length calculation (thanks @tim15)

• Replace find_unused_port with local function (thanks @schneideradam)

• Use black for formatting

• Update config-sample.txt for changes in HomeAssistant API

4.5 v0.4.8 :: 20180804

• Add .close() method to FauxmoPlugins, allowing for cleanup (thanks @howdypierce) discussion,
e907245

• Append plugins directory to sys.path for more convenient loading of additional modules (thanks @howdyp-
ierce) discussion, 03f2101

• Add HTTP headers to /eventservice.xml and /metainfoservice.xml endpoints 5a53268

4.6 v0.4.7 :: 20180512

• Minor dev-side changes

– Use pipenv for dev dependency management

• Add utf-8 to readme parsing (5 days ago) (thanks @hestela!) 49d2c57

• Change newline to \r\n in HTTP responses (thanks @GlennPegden2) 239bc79

• Match MAN: case insensitive (thanks @wingett) 8307096

• Add GetBinaryState and GetFriendlyName commands including test cases (thanks @howdypierce!) 71392de

• Make comparison of the “SOAPACTION” header case-insensitive, per UPnP spec (thanks @howdypierce!)
a5cdf82

• Add fallback for determining IP address when DNS resolution is a problem (thanks @howdypierce!) c2d7f13

• Bugfix: ~/.fauxmo/ not being read as a location for config file (thanks @howdypierce!) c322c9b

4.7 v0.4.6 :: 20180212

• Mostly changes to try to fix compatibility with newer generation Echos / Echo Plus, see #38

4.8 v0.4.5 :: 20171114

• Support new GetBinaryState command (fixes n8henrie/fauxmo#31)

26 Chapter 4. Changelog

https://developers.home-assistant.io/docs/en/external_api_rest.html
https://github.com/howdypierce
https://github.com/n8henrie/fauxmo/issues/58
https://github.com/howdypierce
https://github.com/howdypierce
https://github.com/n8henrie/fauxmo/issues/58
https://github.com/n8henrie/fauxmo/commits?author=hestela
https://github.com/GlennPegden2
https://github.com/wingett
https://github.com/howdypierce
https://github.com/howdypierce
https://github.com/howdypierce
https://github.com/howdypierce

fauxmo Documentation, Release v0.6.0

4.9 v0.4.3 :: 20170914

• Add --version to cli

• Add python_requires specifier to setup.py

• Bind to specific address in make_udp_sock (fauxmo.utils), seems to fix some intermittent failing tests
on MacOS.

4.10 v0.4.2 :: 20170601

• Add additional linters to tests

• Set reuseaddr and reuseport before binding socket

4.11 v0.4.0 :: 20170402

• Rename handlers to plugins

• Add interface for user plugins

• Add type hints

• Require Python 3.6

• Eliminate third party dependencies

• Make sure to close connection when plugin commands fail / return False

4.12 v0.3.3 :: 20160722

• Added compatibility for rollershutter to handlers.hass

• Changed handlers.hass to send values from a dict to make addition of new services easier in the future

4.13 v0.3.2 :: 20160419

• Update SSDPServer to setsockopt to permit receiving multicast broadcasts

• sock kwarg to create_datagram_endpoint no longer necessary, restoring functionality to Python 3.4.0
- 3.4.3 (closes #6)

• make_udp_sock() no longer necessary, removed from fauxmo.utils

• Tox and Travis configs switched to use Python 3.4.2 instead of 3.4.4 (since 3.4.2 is the latest available in the
default Raspbian Jessie repos)

4.9. v0.4.3 :: 20170914 27

fauxmo Documentation, Release v0.6.0

4.14 v0.3.1 :: 20160415

• Don’t decode the UDP multicast broadcasts (hopefully fixes #7)

– They might not be from the Echo and might cause a UnicodeDecodeError

– Just search the bytes instead

• Tests updated for this minor change

4.15 v0.3.0 :: 20160409

• Fauxmo now uses asyncio and requires Python >= 3.4.4

• Extensive changes to codebase

• Handler classes renamed for PEP8 (capitalization)

• Moved some general purpose functions to fauxmo.utils module

• Both the UDP and TCP servers are now in fauxmo.protocols

• Added some rudimentary pytest tests including tox and Travis support

• Updated documentation on several classes

4.16 v0.2.0 :: 20160324

• Add additional HTTP verbs and options to RestApiHandler and Indigo sample to config

– NB: Breaking change: json config variable now needs to be either on_json or off_json

• Make RestApiHandler DRYer with functools.partialmethod

• Add SO_REUSEPORT to upnp.py to make life easier on OS X

4.17 v0.1.11 :: 20160129

• Consolidate logger to __init__.py and import from there in other modules

4.18 v0.1.8 :: 20160129

• Add the ability to manually specify the host IP address for cases when the auto detection isn’t working
(https://github.com/n8henrie/fauxmo/issues/1)

• Deprecated the DEBUG setting in config.json. Just use -vvv from now on.

28 Chapter 4. Changelog

http://pytest.org/latest
http://tox.readthedocs.org/en/latest
https://travis-ci.org/

fauxmo Documentation, Release v0.6.0

4.19 v0.1.6 :: 20160105

• Fix for Linux not returning local IP

– restored method I had removed from Maker Musings original / pre-fork version not knowing it would
introduce a bug where Linux returned 127.0.1.1 as local IP address

4.20 v0.1.4 :: 20150104

• Fix default verbosity bug introduced in 1.1.3

4.21 v0.1.0 :: 20151231

• Continue to convert to python3 code

• Pulled in a few PRs by @DoWhileGeek working towards python3 compatibility and improved devices naming
with dictionary

• Renamed a fair number of classes

• Added kwargs to several class and function calls for clarity

• Renamed several variables for clarity

• Got rid of a few empty methods

• Import devices from config.json and include a sample

• Support POST, headers, and json data in the RestApiHandler

• Change old debug function to use logging module

• Got rid of some unused dependencies

• Moved license (MIT) info to LICENSE

• Added argparse for future console scripts entry point

• Added Home Assistant API handler class

• Use “string”.format() instead of percent

• Lots of other minor refactoring

4.19. v0.1.6 :: 20160105 29

https://github.com/DoWhileGeek

fauxmo Documentation, Release v0.6.0

30 Chapter 4. Changelog

CHAPTER 5

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

5.1 Types of Contributions

5.1.1 Report Bugs

Report bugs at https://github.com/n8henrie/fauxmo/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

5.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to work on it.

5.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

31

https://github.com/n8henrie/fauxmo/issues

fauxmo Documentation, Release v0.6.0

5.1.4 Write Documentation

Fauxmo could always use more documentation, whether as part of the official fauxmo docs, in docstrings, or even on
the web in blog posts, articles, and such.

5.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/n8henrie/fauxmo/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

5.1.6 Create a new Plugin

Please refer to https://github.com/n8henrie/fauxmo-plugins

5.2 Get Started!

Ready to contribute? Here’s how to set up fauxmo for local development.

1. Start by making an issue to serve as a reference point for discussion regarding the change being proposed.

2. Fork the fauxmo repo on GitHub.

3. Clone your fork locally:

```shell_session
$ git clone git@github.com:your_name_here/fauxmo.git
```

4. Install your local copy into a virtualenv. Assuming you have python >= 3.7 installed, this is how you set up your
fork for local development:

```shell_session
$ cd fauxmo
$ python3 -m venv venv
$ source venv/bin/activate
$ pip install -e .[dev,test]
```

5. Create a branch for local development:

```shell_session
$ git checkout -b name-of-your-bugfix-or-feature
```

Now you can make your changes locally.

6. When you’re done making changes, check that your changes pass all tests configured for each Python version
with tox:

32 Chapter 5. Contributing

https://github.com/n8henrie/fauxmo/issues
https://github.com/n8henrie/fauxmo-plugins

fauxmo Documentation, Release v0.6.0

```shell_session
$ tox
```

7. Commit your changes and push your branch to GitHub:

```shell_session
$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature
```

8. Submit a pull request through the GitHub website.

5.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. Pull requests of any substance should reference an issue used for discussion regarding the change being consid-
ered.

2. The style should pass tox -e lint, including docstrings, type hints, and black --line-length=79
--target-version=py37 for overall formatting.

3. The pull request should include tests if I am using tests in the repo.

4. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.md

5. The pull request should work for Python 3.7. If I have included a .travis.yml file in the repo, check
https://travis-ci.org/n8henrie/fauxmo/pull_requests and make sure that the tests pass for all supported Python
versions.

5.4 Tips

To run a subset of tests: pytest tests/test_your_test.py

5.3. Pull Request Guidelines 33

https://travis-ci.org/n8henrie/fauxmo/pull_requests

fauxmo Documentation, Release v0.6.0

34 Chapter 5. Contributing

CHAPTER 6

protocol_notes.md

Details on the Echo’s interaction with Fauxmo, and how to examine it for debugging.

Tons of information gathered by @makermusings, I strongly recommend you start by reading these:

• https://github.com/makermusings/fauxmo/blob/master/protocol_notes.txt

• http://www.makermusings.com/2015/07/13/amazon-echo-and-home-automation

In summary:

1. User tells Echo to “find connected devices” or clicks corresponding button in webapp

2. Echo broadcasts “device search” to 239.255.255.250:1900 (UDP)

3. Fauxmo response includes LOCATION of setup.xml endpoint for each “device” in config (UDP)

4. Echo requests setup.xml endpoint at above LOCATION (HTTP) for each device

5. Fauxmo responds with setup information for each device (HTTP)

6. Alexa verbally announces any discovered devices (really wish I could mute this – set volume to 1 beforehand if
I’ll be doing it a bunch), and they also show up in the webapp

Once you understand the basic model of interaction, the next step in debugging is to inspect the actual requests and
responses.

The following commands require some tools you might not have by default; you can get them with: sudo apt-get
install tcpdump tshark nmap. Doesn’t matter what you choose regarding the wireshark question you’ll get
during installation; just read the warning and make a good decision. On OSX, use homebrew to install the same.

First, get the IP address of your Echo. If you don’t know it:

Assuming your local subnet is 192.168.27.*
sudo nmap -sP 192.168.27.1/24 | grep -i -B 2 amazon

You should get Nmap scan report for 192.168.27.XXX – your Echo IP address. For the examples below,
I’ll use 192.168.27.100 as the Echo IP address, and 192.168.27.31 as the Pi’s IP address (31 as in 3.14,
easier to remember).

35

https://github.com/makermusings/fauxmo/blob/master/protocol_notes.txt
http://www.makermusings.com/2015/07/13/amazon-echo-and-home-automation
http://brew.sh

fauxmo Documentation, Release v0.6.0

Next, we’ll check out the info being sent to and from the Echo and Fauxmo. In one window, run Fauxmo in verbose
mode. In a second window, run the commands below, and check their output when you tell the Echo to find connected
devices.

To get an overview of what’s going on, start with tshark:

sudo tshark -f "host 192.168.27.100" -Y "udp"

Alternatively, only show the Echo's SEARCH requests:
sudo tshark -f "host 192.168.27.100" -Y "udp contains SEARCH"

Only show the Fauxmo responses (note still using the Echo's IP):
sudo tshark -f "host 192.168.27.100" -Y "udp contains LOCATION"

Example output for the first command, showing a few sets of SSDP SEARCH sent by the Echo followed by 4 responses
by Fauxmo (1 for each device in sample config).

Capturing on 'eth0'
1 0.000000 192.168.27.100 -> 239.255.255.250 SSDP 149 M-SEARCH * HTTP/1.1
2 0.046414 192.168.27.31 -> 192.168.27.100 SSDP 428 HTTP/1.1 200 OK
3 0.064351 192.168.27.31 -> 192.168.27.100 SSDP 428 HTTP/1.1 200 OK
4 0.082011 192.168.27.31 -> 192.168.27.100 SSDP 428 HTTP/1.1 200 OK
5 0.101093 192.168.27.31 -> 192.168.27.100 SSDP 428 HTTP/1.1 200 OK
6 0.104016 192.168.27.100 -> 239.255.255.250 SSDP 149 M-SEARCH * HTTP/1.1
7 0.151414 192.168.27.31 -> 192.168.27.100 SSDP 428 HTTP/1.1 200 OK
8 0.171049 192.168.27.31 -> 192.168.27.100 SSDP 428 HTTP/1.1 200 OK
9 0.191602 192.168.27.31 -> 192.168.27.100 SSDP 428 HTTP/1.1 200 OK

10 0.199882 192.168.27.31 -> 192.168.27.100 SSDP 428 HTTP/1.1 200 OK
11 0.231841 192.168.27.100 -> 239.255.255.250 SSDP 164 M-SEARCH * HTTP/1.1
12 0.333406 192.168.27.100 -> 239.255.255.250 SSDP 164 M-SEARCH * HTTP/1.1

To get a raw look at all the info, use tcpdump. I’ve cleaned up a bunch of garbage in the below output, but you should
still be able to recognize each of the critical components.

sudo tcpdump -s 0 -i eth0 -A host 192.168.27.100

This should show a ton of detailed info, including all responses sent to / from the Echo. Replace etho with your
network interface (check with ip link) and 192.168.27.100 with your Echo’s IP address.

The output should start with several of the Echo’s UDP based discovery requests, where you can recognize the UDP
protocol being sent from the Echo 192.168.27.100 to the network’s multicast broadcast 239.255.255.250.
1900, something like:

15:48:39.268125 IP 192.168.27.100.50000 > 239.255.255.250.1900: UDP, length 122
M-SEARCH * HTTP/1.1
HOST: 239.255.255.250:1900
MAN: "ssdp:discover"
MX: 15
ST: urn:Belkin:device:**

Below that, you should see Fauxmo’s responses, also UDP, one for each device in the config. This response provides
the Echo with the LOCATION of the device’s setup.xml.

15:48:39.513741 IP 192.168.27.31.1900 > 192.168.27.100.50000: UDP, length 386
HTTP/1.1 200 OK
CACHE-CONTROL: max-age=86400
DATE: Sun, 24 Apr 2016 21:48:39 GMT
EXT:

(continues on next page)

36 Chapter 6. protocol_notes.md

fauxmo Documentation, Release v0.6.0

(continued from previous page)

LOCATION: http://192.168.27.31:12340/setup.xml
OPT: "http://schemas.upnp.org/upnp/1/0/"; ns=01
01-NLS: c66d1ad0-707e-495e-a21a-1d640eed4547
SERVER: Unspecified, UPnP/1.0, Unspecified
ST: urn:Belkin:device:**
USN: uuid:Socket-1_0-2d4ac336-8683-3660-992a-d056b5382a8d::urn:Belkin:device:**

Somewhere below that, you’ll see the Echo request each device’s setup.xml (based on the LOCATION from the
prior step), this time TCP instead of UDP.

15:48:39.761878 IP 192.168.27.100.39720 > 192.168.27.31.12341: Flags [P.], seq 1:68,
→˓ack 1, win 274, options [nop,nop,TS val 619246756 ecr 140303456], length 67
GET /setup.xml HTTP/1.1
Host: 192.168.27.31:12341
Accept: */*

And somewhere below that, Fauxmo’s setup response, for each device in the config, also TCP:

15:48:39.808164 IP 192.168.27.31.12342 > 192.168.27.100.59999: Flags [P.], seq 1:608,
→˓ack 68, win 453, options [nop,nop,TS val 140303462 ecr 619246754], length 607
HTTP/1.1 200 OK
CONTENT-LENGTH: 375
CONTENT-TYPE: text/xml
DATE: Sun, 24 Apr 2016 21:48:39 GMT
LAST-MODIFIED: Sat, 01 Jan 2000 00:01:15 GMT
SERVER: Unspecified, UPnP/1.0, Unspecified
X-User-Agent: Fauxmo
CONNECTION: close

<?xml version="1.0"?>
<root>
<device>
<deviceType>urn:Fauxmo:device:controllee:1</deviceType>
<friendlyName>fake hass switch by REST API</friendlyName>
<manufacturer>Belkin International Inc.</manufacturer>
<modelName>Emulated Socket</modelName>
<modelNumber>3.1415</modelNumber>
<UDN>uuid:Socket-1_0-cbc4bc63-e0e2-3a78-8a9f-f0ff7e419b79</UDN>
</device>
</root>

Then, to get a really close look at a request, well go back to tshark. For example, we can add the -V flag to get
a ton more info, and add -c 1 (count) to limit to capturing a single packet, and further refine the capture filter by
specifying that we only want to look at packets sent from the Pi to the Echo.

sudo tshark -f "src 192.168.27.31 and dst 192.168.27.100" -c 1 -V

At the bottom, you should find the Hypertext Transfer Protocol section contains the same setup.xml
response we found in the tcpdump output above.

You can also send requests from another device on the network to check out Fauxmo’s responses and ensure that they’re
getting through the network. For example, to simulate the Echo’s device search, run the following from another device
on the network, in two different windows:

Seems to work with `nc.traditional` on Raspberry Pi, not yet working for me on OSX
Window 1: Listen for response on port 12345 (should show up once second command is
→˓sent)

(continues on next page)

37

fauxmo Documentation, Release v0.6.0

(continued from previous page)

nc.traditional -l -u -p 12345

Window 2: Send simulated UDP broadcast device search (from port 12345)
echo -e '"ssdp:discover"urn:Belkin:device:**' | nc.traditional -b -u -p 12345 239.255.
→˓255.250 1900

To request a device’s setup.xml, using the device’s port from config.json:

Send a request for the `setup.xml` of a device from the sample config
curl -v 192.168.27.31:12340/setup.xml

The above commands may seem a little complicated if you’re unfamiliar, but they’re immensely powerful and indis-
pensable for debugging these tricky network issues. If you’re not already familiar with them, learning the basics will
serve you well in your IoT endeavors!

To verify that Fauxmo is working properly, check for a few things:

1. Is the Pi consistently seeing the Echo’s M-SEARCH requests?

2. Is Fauxmo consistently replying with the LOCATION responses?

3. Is the Echo then requesting the setup.xml (for each device)?

4. Is Fauxmo consistently replying with the setup info?

If you can confirm that things seem to be working through number 4, then it would seem that Fauxmo is working
properly, and the issue would seem to be elsewhere.

6.1 On and Off Commands

One way to examine exactly what the Echo sends to one of your connected Fauxmo devices (i.e. one that already
works as expected) is to first stop Fauxmo (to free up the port), then use netcat to listen to that port while you trigger
the command. E.g. for a Fauxmo device configured to use port 12345, run nc.traditional -l 12345 and
then tell the Echo to “turn on [device name]”. The Echo will notify you that the command failed, obviously, because
Fauxmo isn’t running, but you should be able to see exactly what the Echo sent.

These are the requests that the Echo sends to Fauxmo when you ask it to turn a device. . .

6.1.1 On

POST /upnp/control/basicevent1 HTTP/1.1
Host: 192.168.27.31:12345
Accept: */*
Content-type: text/xml; charset="utf-8"
SOAPACTION: "urn:Belkin:service:basicevent:1#SetBinaryState"
Content-Length: 299

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" s:encodingStyle=
→˓"http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:SetBinaryState xmlns:u="urn:Belkin:service:basicevent:1">
<BinaryState>1</BinaryState>
</u:SetBinaryState>

(continues on next page)

38 Chapter 6. protocol_notes.md

fauxmo Documentation, Release v0.6.0

(continued from previous page)

</s:Body>
</s:Envelope>

6.1.2 Off

POST /upnp/control/basicevent1 HTTP/1.1
Host: 192.168.27.31:12345
Accept: */*
Content-type: text/xml; charset="utf-8"
SOAPACTION: "urn:Belkin:service:basicevent:1#SetBinaryState"
Content-Length: 299

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" s:encodingStyle=
→˓"http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:SetBinaryState xmlns:u="urn:Belkin:service:basicevent:1">
<BinaryState>0</BinaryState>
</u:SetBinaryState>
</s:Body>
</s:Envelope>

Several similar terms can be used instead of On and Off, e.g. Open and Close; the response looks identical. This
Reddit post has a good number more that work. NB: the Dim commands in the post don’t seem to work (likely
incompatible with Wemo devices, so the Echo doesn’t even try to send them).

As of sometime around 20171030, it will also now send a GetBinaryState action when viewing a device, which
can be problematic for earlier versions of Fauxmo (prior to v0.4.5).

POST /upnp/control/basicevent1 HTTP/1.1
Host: 192.168.27.31:12345
Accept: */*
Content-type: text/xml; charset="utf-8"
SOAPACTION: "urn:Belkin:service:basicevent:1#GetBinaryState"
Content-Length: 299

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" s:encodingStyle=
→˓"http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:GetBinaryState xmlns:u="urn:Belkin:service:basicevent:1">
<BinaryState>1</BinaryState>
</u:GetBinaryState>
</s:Body>
</s:Envelope>

I think I have a good idea what the Fauxmo response should look like, thanks to help from:

• u/romanpet

• https://github.com/go-home-iot/belkin/blob/7b62ec854e9510f4857bb9eceeb8fef3d8b55fb4/device.go

POST /upnp/control/basicevent1 HTTP/1.1
Host: 192.168.27.31:12345
Accept: */*

(continues on next page)

6.1. On and Off Commands 39

https://www.reddit.com/r/amazonecho/comments/4gaf05/discovery_a_lot_more_smart_home_action_phrases/
https://www.reddit.com/r/amazonecho/comments/4gaf05/discovery_a_lot_more_smart_home_action_phrases/
https://github.com/n8henrie/fauxmo/issues/31
https://www.reddit.com/r/homeautomation/comments/79wrl7/can_anybody_with_an_echo_a_wemo_and_wireshark/dp6akcc/

fauxmo Documentation, Release v0.6.0

(continued from previous page)

Content-type: text/xml; charset="utf-8"
SOAPACTION: "urn:Belkin:service:basicevent:1#GetBinaryState"
Content-Length: 299

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" s:encodingStyle=
→˓"http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:GetBinaryStateResponse xmlns:u="urn:Belkin:service:basicevent:1">
<BinaryState>0</BinaryState>
</u:GetBinaryStateResponse>
</s:Body>
</s:Envelope>

40 Chapter 6. protocol_notes.md

CHAPTER 7

Indices and tables

• genindex

• modindex

41

fauxmo Documentation, Release v0.6.0

42 Chapter 7. Indices and tables

Python Module Index

f
fauxmo, 22
fauxmo.cli, 19
fauxmo.fauxmo, 20
fauxmo.plugins, 18
fauxmo.plugins.commandlineplugin, 13
fauxmo.plugins.homeassistantplugin, 15
fauxmo.plugins.simplehttpplugin, 16
fauxmo.protocols, 20
fauxmo.utils, 21

43

fauxmo Documentation, Release v0.6.0

44 Python Module Index

Index

Symbols
__init__() (fauxmo.plugins.FauxmoPlugin method),

18
__init__() (fauxmo.plugins.commandlineplugin.CommandLinePlugin

method), 14
__init__() (fauxmo.plugins.homeassistantplugin.HomeAssistantPlugin

method), 16
__init__() (fauxmo.plugins.simplehttpplugin.SimpleHTTPPlugin

method), 17
__init__() (fauxmo.protocols.Fauxmo method), 20
__init__() (fauxmo.protocols.SSDPServer method),

21

A
add_device() (fauxmo.protocols.SSDPServer

method), 21
add_http_headers() (fauxmo.protocols.Fauxmo

static method), 20

C
cli() (in module fauxmo.cli), 19
close() (fauxmo.plugins.FauxmoPlugin method), 19
CommandLinePlugin (class in

fauxmo.plugins.commandlineplugin), 14
connection_lost() (fauxmo.protocols.SSDPServer

method), 21
connection_made() (fauxmo.protocols.Fauxmo

method), 20
connection_made() (fauxmo.protocols.SSDPServer

method), 21

D
data_received() (fauxmo.protocols.Fauxmo

method), 20
datagram_received()

(fauxmo.protocols.SSDPServer method),
21

F
Fauxmo (class in fauxmo.protocols), 20

fauxmo (module), 22
fauxmo.cli (module), 19
fauxmo.fauxmo (module), 20
fauxmo.plugins (module), 18
fauxmo.plugins.commandlineplugin (mod-

ule), 13
fauxmo.plugins.homeassistantplugin (mod-

ule), 15
fauxmo.plugins.simplehttpplugin (module),

16
fauxmo.protocols (module), 20
fauxmo.utils (module), 21
FauxmoPlugin (class in fauxmo.plugins), 18

G
get_local_ip() (in module fauxmo.utils), 21
get_state() (fauxmo.plugins.commandlineplugin.CommandLinePlugin

method), 14
get_state() (fauxmo.plugins.FauxmoPlugin

method), 19
get_state() (fauxmo.plugins.homeassistantplugin.HomeAssistantPlugin

method), 16
get_state() (fauxmo.plugins.simplehttpplugin.SimpleHTTPPlugin

method), 18
get_unused_port() (in module fauxmo.utils), 21

H
handle_action() (fauxmo.protocols.Fauxmo

method), 20
handle_event() (fauxmo.protocols.Fauxmo

method), 20
handle_metainfo() (fauxmo.protocols.Fauxmo

method), 20
handle_setup() (fauxmo.protocols.Fauxmo

method), 21
HomeAssistantPlugin (class in

fauxmo.plugins.homeassistantplugin), 16

L
latest_action (fauxmo.plugins.FauxmoPlugin at-

45

fauxmo Documentation, Release v0.6.0

tribute), 19

M
main() (in module fauxmo.fauxmo), 20
make_serial() (in module fauxmo.utils), 22
make_udp_sock() (in module fauxmo.utils), 22
module_from_file() (in module fauxmo.utils), 22

N
name (fauxmo.plugins.FauxmoPlugin attribute), 19
NEWLINE (fauxmo.protocols.Fauxmo attribute), 20

O
off() (fauxmo.plugins.commandlineplugin.CommandLinePlugin

method), 14
off() (fauxmo.plugins.FauxmoPlugin method), 19
off() (fauxmo.plugins.homeassistantplugin.HomeAssistantPlugin

method), 16
off() (fauxmo.plugins.simplehttpplugin.SimpleHTTPPlugin

method), 18
on() (fauxmo.plugins.commandlineplugin.CommandLinePlugin

method), 14
on() (fauxmo.plugins.FauxmoPlugin method), 19
on() (fauxmo.plugins.homeassistantplugin.HomeAssistantPlugin

method), 16
on() (fauxmo.plugins.simplehttpplugin.SimpleHTTPPlugin

method), 18

P
port (fauxmo.plugins.FauxmoPlugin attribute), 19

R
respond_to_search()

(fauxmo.protocols.SSDPServer method),
21

run_cmd() (fauxmo.plugins.commandlineplugin.CommandLinePlugin
method), 15

S
send() (fauxmo.plugins.homeassistantplugin.HomeAssistantPlugin

method), 16
service_map (fauxmo.plugins.homeassistantplugin.HomeAssistantPlugin

attribute), 16
set_state() (fauxmo.plugins.simplehttpplugin.SimpleHTTPPlugin

method), 18
SimpleHTTPPlugin (class in

fauxmo.plugins.simplehttpplugin), 17
SSDPServer (class in fauxmo.protocols), 21

46 Index

	Fauxmo README
	fauxmo
	Credits
	Changelog
	Contributing
	protocol_notes.md
	Indices and tables
	Python Module Index
	Index

